You are currently browsing the tag archive for the ‘Oxford’ tag.
I found this elementary number theory problem in the “Problem Drive” section of Invariant Magazine (Issue 16, 2005), published by the Student Mathematical Society of the University of Oxford. Below, I have included the solution, which is very elementary.
Problem: Find all ordered pairs of prime numbers such that
is also a prime.
Solution: Let . First, note that if
is a solution, then so is
. Now,
and
can’t be both even or both odd, else
will be even. Without loss of generality, assume
and
some odd prime. So,
. There are two cases to consider.
Case 1: .
This yields , which is prime. So,
and, hence
are solutions.
Case 2: .
There are two sub-cases to consider.
, where
is some even integer. Then, we have
. Hence,
; so,
can’t be prime.
, where
is some odd integer. Then we have
. Hence,
; so, again,
can’t be prime.
As we have exhausted all possible cases, we conclude and
are the only possible solutions.
Recent Comments