You are currently browsing the tag archive for the ‘golberg’ tag.

This one, by Oleg Golberg, appeared in the 6^{th} issue of Mathematical Reflections (MR) 2007. I don’t have a solution yet, but I think I should be able to solve it sooner or later. If you find a solution, you should send it to MR by Jan 19. Here is the problem anyway.

For all integers k, n \geq 2, prove that \\ \displaystyle \sqrt[n]{1 + \frac{n}{k}} \leq \frac1{n} \log \big( 1+\frac{n}{k-1} \big) + 1.

Our other blog

Visitors to this blog

Blog Stats

  • 355,659 hits

Wikio Ranking

Wikio - Top Blogs - Sciences

Current Online Readers

Recent Comments

John Favors on Solution to POW-13: Highly…
Wayne J. Mann on Solution to POW-12: A graph co…
erneststephen on The 54th Carnival of Math…
anhtraisg on p^q + q^p is prime
prof dr drd horia or… on My first post
prof drd horia orasa… on My first post
prof dr mircea orasa… on Inequality with log
notedscholar on Self-referential Paradoxes, In…
prof dr mircea orasa… on Inequality with log
prof dr mircea orasa… on Inequality with log
prof dr mircea orasa… on 2010 in review
kenji on Basic category theory, I
prof dr mircea orasa… on Solution to POW-10: Another ha…
prof drd horia orasa… on Continued fraction for e
prof drd horia orasa… on Inequality with log

Archives

April 2021
M T W T F S S
 1234
567891011
12131415161718
19202122232425
2627282930