You are currently browsing the tag archive for the ‘Geometric Algebra’ tag.

**1. Notions of Set Theory**

Artin introduces a concept that is referred to as *the canonical factoring of a map (function)*. The basic idea is that any function can be factored into three functions and in a somewhat unique way:

, where

is *onto*, is a *bijection*, and is an *injection*. The construction of these three functions is done in a *canonical*, or *natural*, way that doesn’t require the use of objects outside the domain and/or range of .

Let be some non-empty set. If is a function from into a set , then we write

.

Suppose and . Then, we can form a *composite function* defined by for all . The *associative law* holds trivially for composition of functions.

Further, if , then the set of all the images of elements of , denoted by , is called the image of . In general, . We call the function *onto* whenever .

Now, let us partition the set into equivalence classes such that are in the same equivalence class iff . This partition is called the *quotient set* and is denoted by .

To illustrate, suppose and . Also, let such that and . Then, the quotient set, .

We construct now a function that maps each to its equivalence class. It can be verified that is *onto*. So, taking the above example, we have , , and .

Next, we construct a function where each element (which is an equivalence class) of is mapped to a where each is the image of the members of the equivalence class. Recall that are in the same equivalence class iff . Therefore, is *one-to-one* and *onto*. Continuing with our above example, we have , and .

And, finally, we construct a trivial function where for each . Note that is *not* an identity because it maps a subset, , into a possibly larger set, , *i.e.* is an identity iff is *onto*. In general, is *one-to-one* and *into* (*i.e.* an *injection*.)

Thus, if , we note that for every .

And, so,

.

Once again, is *onto*, is a *bijection*, and is an *injection*.

It looks like it doesn’t make much sense to factor the way we did above, but we will explore more of this with respect to group homomorphisms in my next post.

Ok, I got a copy of Emil Artin‘s *Geometric Algebra* from the library a couple of days ago, and a careful reading of some of the parts from the first chapter has convinced me even more now that one should indeed learn mathematics from the masters themselves!

The subject employs concepts/theorems/results from set theory, vector spaces, group theory, field theory and so on, and *centers around the foundations of affine geometry, the geometry of quadratic forms and the structure of the general linear group. *The book also *deals with symplectic and orthogonal geometry and also the structure of the symplectic and orthogonal groups.*

I intend to blog on this subject for as long as I can, and this will be my first serious project for now. There are some neat things I learned in chapter I which basically deals with preliminary notions. The actual text begins from chapter II, which is titled *Affine and Projective Geometry*. But, chapter I has some cool techniques too, and I wish to share them in my subsequent posts.

## Recent Comments