You are currently browsing the tag archive for the ‘euclidean’ tag.

High-school students and undergraduates are (almost) always taught the following definition of an equivalence relation.

A binary relation R on a set A is an equivalence iff it satisfies

  • the reflexive property: for all a  in A, a R a,
  • the symmetric property: for all a, b in A, if a R b, then b R a, and
  • the transitive property: for all a, b, c in A, if a R b and b R c, then a R c.

However, there is another formulation of an equivalence relation that one usually doesn’t hear about, as far as I know. And, it is the following one.

A binary relation R on a set A is an equivalence iff it satisfies

  • the reflexive property: for all a  in A, a R a, and
  • the euclidean property: for all a, b, c in A, if a R b and a R c, then b R c.

Exercise:  Show that a binary relation R on a set A is reflexive, symmetric and transitive iff it is reflexive and euclidean.


Our other blog

Visitors to this blog

Blog Stats

  • 357,713 hits

Wikio Ranking

Wikio - Top Blogs - Sciences

Current Online Readers

Recent Comments

Convictions ·… on Continued fraction for e
John Favors on Solution to POW-13: Highly…
Wayne J. Mann on Solution to POW-12: A graph co…
erneststephen on The 54th Carnival of Math…
anhtraisg on p^q + q^p is prime
prof dr drd horia or… on My first post
prof drd horia orasa… on My first post
prof dr mircea orasa… on Inequality with log
notedscholar on Self-referential Paradoxes, In…
prof dr mircea orasa… on Inequality with log
prof dr mircea orasa… on Inequality with log
prof dr mircea orasa… on 2010 in review
kenji on Basic category theory, I
prof dr mircea orasa… on Solution to POW-10: Another ha…
prof drd horia orasa… on Continued fraction for e

Archives

July 2021
M T W T F S S
 1234
567891011
12131415161718
19202122232425
262728293031