The study of *binary algebraic structures* (or *binary structures*) and *isomorphisms* is a basic (and fundamental) one in the study of abstract algebra, and in some sense, the connection between these two concepts is similar to (in fact, extends) the one between *sets* and *bijection*. This post explores that connection.

Recall, two sets and have the same “size”, or have an equal number of elements, if there exists a bijection (or bijective function) , *i.e.* is a mapping that is both *one-to-one* and *onto*. If and are both finite sets, then it is easy to prove if there exists a bijection between the two. However, if and are infinite sets, then it is usually a non-trivial task proving the existence of a bijection (if there exists one!) between the two sets.

One way of looking at this is by viewing the “structure” of sets as an “obstruction.” So, for instance, we could ask, what could obstruct two sets and from having a bijection ? Answer: if they have different *cardinalities *(which may be viewed as a *structural property*). Okay, I admit the answer is somewhat circular, but we will stick with this for now. Now, is cardinality the *only* obstruction to the existence of a bijection between any two sets? It turns out the answer is yes. In other words, two sets have the same cardinality if and only if there exists a bijection between the two. Now, let’s extend this further to binary algebraic structures and isomorphisms.

Let’s quickly go through some definitions, first.

1) A

binary operationon a set is a function mapping into .2) A

binary algebraic structureis a set together with a binary operation on .3) Let and be binary algebraic structures. An

isomorphismof with is a one-to-one and onto function such that

.

We note above that the notion of isomorphism between binary algebraic structures “extends” the notion of bijection between sets, in the sense that isomorphism tells us how similar two binary structures are. Just as the existence of a bijection between sets and tells us they have the same cardinality (which may be considered a structural property), the existence of an isomorphism between binary structures also tells us how similar they are “structurally.”

Now, just as we asked, earlier, what possible obstructions there might be to the existence of a bijection between two sets, we may ask in a similar vein, what possible obstructions might there be to the existence of an isomorphism between two binary structures and ? Answer: there is more than one. Let us take a look at some of those obstructions.

1) *Cardinality of the sets and .*

If and have different cardinalities, then it is easy to prove that there does __not__ exist an isomorphism , *i.e.* and are not isomorphic. For example, and (where is the usual addition) are not isomorphic because has cardinality while . Note that it is not enough to say that is subset of . For example, is isomorphic to (where is the usual addition) even though is a subset of . (Here, .)

(More to come …)

## 2 comments

Comments feed for this article

October 26, 2011 at 7:47 pm

ساجدة شعبان دروبيشكرا على هذه المعلومات الرائعة والى الأمام

February 18, 2012 at 10:04 pm

karenin step 3, where do x and y come from? is x a member of S and y a member of S’?