The axiom of extension (discussed in Section 1) is unique in the sense that it postulates the existence of a relation between belonging and equality. All the other axioms of set theory, on the other hand, are designed to *create* new sets out of old ones!

The axiom of specification, loosely speaking, states that given some arbitrary (but well-defined) set (our universe), if we can make some “intelligent” assertion about the elements of , then we specify or characterize a subset of . An intelligent assertion about the elements of could, for example, specify a property that is shared by some elements of and not shared by the other elements. In the end, we will take up an example about an assertion that is tied to the famous *Russell’s paradox*.

For now, let us discuss a simple example. Suppose is the set of all (living) women. If we use to denote an arbitrary element of , then the *sentence* “ is married” is true for some of the elements of and false for others. Thus, we could *generate* a subset of using such a sentence. So, the subset of all the women who are married is denoted by . To take another example, if is the set of natural numbers, then . Now, note that the subset of is not the same as the number Loosely speaking, a box containing a hat is not the same thing as the hat itself.

Now, we only need to define what a *sentence* is before we can precisely formulate our axiom of specification. The following rules would be a formal way to (recursively) define a sentence:

“” is a sentence.”

“” is a sentence.

If is a sentence, then is a sentence.

If are sentences, then is a sentence.

If are sentences, then is a sentence.

If are sentences, then is a sentence.

If are sentences, then is a sentence.

If is a sentence, then is a sentence.

If is a sentence, then is a sentence.

Note that the two types of sentences, “” and ““, stated in the first two rules, are what we would call *atomic* sentences, while the rest of the other rules specify (valid) ways of generating (infinitely) many sentences from those two atomic sentences using the usual logical operators. Also, note that some of the rules above are rather redundant because it is possible to *convert* certain sentences having a set of logical operators to another sentence having a different set of logical operators. For example, “” can be written as ““, and so on. Anyway, we are digressing too far from our objective.

Having defined what a sentence is, we can now formulate the major principle of set theory, often referred to by its German name *Aussonderungsaxiom*.

Axiom of specification:To every set and to every condition , there corresponds a set whose elements are exactly those elements of for which holds.

A “condition” here just means a sentence. The letter is *free* in the sentence , meaning occurs in at least once without occurring in the phrases “for some ” or “for all “. Now, the axiom of extension guarantees us that the axiom of specification determines the set B uniquely, and we usually write .

This finally brings us to the example we mentioned in the beginning of this section. Let us define . Suppose is some arbitrary set. Let . Then for all ,

.

Can we have ? The answer is no, and here’s why. Suppose, for the sake of contradiction, . Then, we have either , or . If , then using , we have , a contradiction. And, if , then using again, the assumption yields , a contradiction. This proves that is false, and hence we conclude . Note that our set was an arbitrary one, and we just showed that there is something (*viz.* B) that does not belong to . We have, thus, essentially proved that

there is no universe.

Here, “universe” means “universe of discourse”, a set that contains all the objects that enter into that discussion.

It was mentioned earlier that the above example has something to do with *Russell’s paradox*. We shall see why. In the earlier pre-axiomatic approaches to set theory, the existence of a universe was taken for granted. Now, in the above example, we just showed that implies the non-existence of a universe. So, if we assume that a universe exists, then it implies that , but we have already shown that this leads to a contradiction! And this was exactly the content of *Russell’s paradox*. In Halmos’ own words:

The moral is that it is impossible , especially in mathematics, to get something for nothing. To specify a set, it is not enough to pronounce some magic words (which may form a sentence such as ““); it is necessary also to have at hand a set whose elements the magic words apply.

## 2 comments

Comments feed for this article

April 30, 2012 at 4:23 pm

Amarnath BhattacharyaHere while going through the topic of axiom of specification from the book of naive set theory by holmes few things I need to get better understanding:

1) The sentence S(x) is defined as not (x belongs to x).Here ‘belongs to’ relation applies to a what? If x is an element then how can x becomes a set? or if x is a set then for ‘belongs to’ relation the second x should be a family of sets,so for any way the S(x) would be not(x belogs to {x}).

April 10, 2015 at 7:07 am

Walter MilnerIts not clear to me why this stops Russell’s Paradox. RP starts Let S be the set of all sets which…

How about ‘A’ is the set of all sets. and the ‘condition S(x)’ is that x is not an element of itself.

Why does the axiom of specification disallow that?

Ratherthan saying theer ixists a set such that.. shoudl it not say that all sets must be specified this way. ie

for all sets S there exists a universal set U and a predicate P such that for all elements of S they are elements of U and P(the element) is true?

Key difference is for all sets, not there exists a set