“

In mathematics you don’t understand things. You just get used to them.”– John von Neumann

I had been wanting to write on this topic – no, I am not referring to the above quote by von Neumann – for quite some time but I wasn’t too sure if doing so would contribute anything “useful” to the ongoing discussion on the pedagogical roles of *concrete* and *abstract* examples in mathematics, a discussion that’s been going on on various blogs for some time now. In part coaxed by Todd, let me share some of my own observations for whatever they are worth.

First, some background. A few months ago, Scientific American published an article titled *In Abstract: Avoid Concrete Example When Teaching Math* (by Nikhil Swaminathan). Some excerpts from that article can be read below:

New research published in

Sciencesuggests that attempts by math teachers to make the subject easier to grasp by providing such practical examples may actually have made it tougher to learn.…

For their study, Kaminski and her colleagues taught 80 undergraduate students—split into four 20-person groups—a new mathematical system (based on several simple arithmetic concepts) in different ways.

One group was taught using generic symbols such as circles and diamonds. The other groups were taught using practical scenarios such as combining liquids in measuring cups.

The researchers then tested their grasp of the concept by seeing how well they could apply it to an unrelated situation, in this case a children’s game. The results: students who learned using symbols on average scored 80 percent; the others scored between 40 and 50 percent, according to Kaminski.

One may read the entire article online to learn a bit more about the study done. Let me add that I do agree with the overall conclusion of the study cited: in mathematics *concrete* examples (in contradistinction to *abstract* ones) more often than not obfuscate the underlying concepts behind those examples, thus hindering “real” or complete understanding of those concepts. However, I also feel that such a claim must be somewhat qualified because there is more to it than meets the eye.

Sometimes the line between abstract examples and concrete ones can be quite blurry. What is more, some concrete examples may even be *more* abstract than other concrete ones. In this post, I will assume (and hope others do too) that the distinction between an abstract example and a concrete one (that I have chosen for this post) is sharp enough for our discussion. Of course, my aim is not to highlight such a distinction but to emphasize the importance of *both* abstract *and* concrete examples in mathematical education, for I firmly believe that a “concrete” *understanding* of concepts isn’t necessarily subsumed under an “abstract” one, even though a concrete example may just be a special case of a more general and abstract one. What is more, and this may sound surprising, abstract examples may *sometimes** not* reveal certain useful principles which, on the other hand, may be clearly revealed by concrete ones!

Let me illustrate what I wrote above by discussing a somewhat well-known problem and its two related solutions, one of which employs an abstract approach and the other a concrete one, if you will. Some time ago, Isabel at God Plays Dice pointed to an online article titled *An Intuitive Explanation of Bayesian Reasoning* by Eliezer Yudkowsky, and I borrow the problem I am about to discuss in this post from that article.

PROBLEM: 1% of women at age forty who participate in routine screening have breast cancer. 80% of women with breast cancer will get positive mammographies. 9.6% of women without breast cancer will also get positive mammographies. A woman in this age group had a positive mammography in a routine screening. What is the probability that she actually has breast cancer?

How may one proceed to solve this problem? Well, first, let us look at an “abstract” solution.

“ABSTRACT” SOLUTION: Here we employ the machinery of set-theoretic probability theory to arrive at our answer. We first note that what we really want to compute is the probability of a woman having breast cancer given that she has tested positive. That is, we want to compute the conditional probability P(A/B), where event A corresponds to that of a woman having breast cancer and event B corresponds to that of a woman testing positive for breast cancer. Now, from Bayes’ theorem, we have

.

Also, we note that and . Plugging these values into the above formula immediately yields P(A/B) = 7.76%. And, we are done.

A couple of observations.

1. It is not hard to observe that the derivation of Bayes’ formula follows from the definition of conditional probability, *viz.* P(A/B) = P(AB)/P(B), where P(B) > 0, and the usual set-theoretic rules involving the union and intersection of sets (events). And, this derivation can be carried out through sheer manipulation of symbols under those rules. By that I mean, if a student knows enough set theory as well as the “laws” of set-theoretic probability theory, then the derivation of Bayes’ theorem makes absolutely no (or, almost no) use of the “intuitive” faculty of a student.

2. The abstract method presented above also *subsumes* the concrete method, as we shall see shortly. What is more, Bayes’ formula can be generalized even further. This means that once we have this particularly useful “abstract” tool at our disposal, we can solve any number of similar problems by repeatedly using this tool in concrete (and even abstract) cases. In addition, Bayes’ theorem can also be thought of as a “black box” to which we apply certain inputs in order to get our output. This should not surprise us, for in mathematics the use of theorems as black boxes is a common one.

Now, the above two observations may lead one to believe that indeed there is almost no need to find a “concrete” solution to the above problem. After all, the abstract case takes care of the concrete cases completely.

However, let us see if we can come up with a concrete (that is, a far less abstract) solution and examine it more closely to see if we can extract some useful ideas/techniques from the same.

“CONCRETE” SOLUTION: Suppose we choose a random sample of 100,000 women of age forty. (We choose that figure for reasons that will be clear soon.) Then, we have two groups of women.

1st group: 1,000 (1%) women who

havebreast cancer.2nd group: 99,000 (99%) women who

don’t havebreast cancer.Now, in the 1st group, 800 (80% of 1,000) women will test

positive, and, in the 2nd group, 9,504 (9.6% of 99,000) women will testpositive. So, it is clear that if a woman testspositive, then the probability that she belongs to the 1st group (that is, she really has cancer) is 800/(800+9504) = 7.76 %. And, we are done.

Let me quickly point out a very important advantage the above solution has over the abstract one we saw earlier.

Indeed, we finally “see” what’s really going on. That is, from an intuitive standpoint, we observe in the above solution that there is a “tree structure” involved in our reasoning. The sample of 1,00,000 women *bifurcates* into two distinct samples, one of which has 1,000 women who have breast cancer and the other that has 99,000 women who don’t. Next, we observe that each of these two samples in turn *bifurcates* into two samples, one of which comprises women who test positive and the other that comprises women who don’t. This clearly reveals to the student the “tree structure” in the above reasoning. This makes the concrete solution much more appealing and “satisfying” to the average student. In fact, the generalization we talked about earlier in regard to Bayes’ theorem can even be carried out in this particular method: we will only need to increase the depth and/or breadth of our “tree” by extending more nodes from existing ones!

Moreover, one may recall that the use of such “trees” in reasoning is quite common in mathematics. For instance, the two most basic rules of Combinatorial Principles, *viz*. the Rule of Sum and the Rule of Product are proved using such “trees”. So, this is one instance in which a concrete solution reveals much more clearly a quite fundamental principle/technique (use of “trees” in reasoning) in mathematics that isn’t clearly revealed at all in the abstract solution we examined earlier.

In other words, much thought needs to be put in deciding if abstract examples should necessarily be “favored” over concrete ones in mathematics education. From a pedagogical standpoint, sometimes concrete examples are simply much better than abstract ones!

## 3 comments

Comments feed for this article

July 30, 2008 at 12:27 am

Todd TrimbleI think what your example shows is that sometimes the concrete example may make the issues

come alivemore successfully than an abstract approach would. The critical point is whether the inferential bridge from the concrete example to the general abstract principle is successfully crossed. I think a strong case could be made that in the case of your example, it’s but a short trip to the general Bayesian principle, perhaps with a gentle pedagogical nudge from the teacher to make clear the general tree pattern involved.Alexandre Borovik also commented on the article you cite here, and tartly but correctly observed that the conclusion from this clumsily and superficially designed experiment was all but foregone. [That’s not to deny that Kaminski makes a good general point about transfer of knowledge, and the fact that concrete examples may contain a great deal of extraneous clutter: something to keep in mind when teaching “reform calculus”.]

Good teachers have already realized Kaminski’s point, of course. And “concrete” doesn’t have to mean “real-world” necessarily, but it should at least include “vividly rendered and remembered” — a fairy-tale example might do the job just as well.

August 14, 2009 at 11:10 am

bajihai

October 14, 2014 at 8:32 am

VioletteIt was hard to find your blog in google. You should

create some hi PR contextual backlinks in order to rank

your website. I know – writing articles is very time consuming, but contextual backlinks are the best type of backlinks.

I know one cool tool that will help you to create unique, readable articles in minute, just search in google –

laranita free content source